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e 0 40 80 120 180 

% + 10.87 + 8.06 + 6.97 -4.55 --1.58 

“e + 5.52 + 3.96 -+ 2.84 -3.12 - 4.28 

Values of crs for the isotropic case are given in the third line ; 0 is the angle measured 
from the normal to the half-plane boundary, 
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The problem of the impression of two identical axisymmetric stamps in an elas- 

tic sphere is considered. It is assumed that the surface of the sphere outside the 
stamps is stress-free, while there are no shear stresses under the stamp, A solu- 
tion is obtained for arbitrary stamps for both given and unknown in advance boun- 
daries of the contact domains by the method elucidated in [l]. A numericalcal- 
culation is presented for spherical stamps under internal contact with the sphere. 

The contact problem for a sphere in such a formulation (when the boundaries 
of the contact domains are known) was first studied in [2]. The problem was re- 

duced to determining certain coefficients from dual series - equations containing 
Legendre polynomials. The method permitting reduction of the solution of the 
obtained dual series - equations to the solution of an infinite system of linear 
algebriic equations is indicated. This method is reduced to an integral equation 
of the first kind in [3] and a possible scheme is indicated for the approximate 
solution of the equation obtained. 

1, Let us consider the contact problem of impressing two axisymmetric stamps(Fig.lJ, 
whose surface is given in a spherical r, 0, cp coordinate system by the equation 

r = R 11 + p @I,], p (z - 0) = p (e), p (0) - 0 (1.1) 

onto an elastic sphere r Q R . 
The boundary conditions (on the sphere r = H) are <2aR is the approach of the 
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Determine the contact pressure o (01 (0 < 9 < y) and 
(in the case of stamps without comers) the magnitude of 
the angle y characterizing the size of the contact domains. 

Using the closed solution of the problem of equilibrium 

of an elastic sphere [4], we satisfy conditions (1.2). Taking 
this into account, we obtain the integral equation 

Y 

c 5 (2) [H (I$ x) + /I (l3, n - x)] sin s( dzi = 2nC X (1.3) 
; 

Fig. 1 to determine the contact pressure by virtue of the symmetry 
o (n - 0) = (5 (B), or after a change of varfables 

t't =-. ig l!2 ‘x, FZ ‘=: tg V, 0, & == tg II2 y (1.4) 

The remaining notation in (1.3) - (I. 5) agrees with that used in El]. 
The function S (2, t) in (1.5) possesses the same properties, as is easily seen, as the 

corresponding function (11) in [l]. 
After regularizing (1.4), based on the solution of the axisymmetric contact problem 

for an elastic half-space, we obtain a Fredholm integral equation of the second kind to 
determine the unction (1.6) 

which agrees in form with (24) in [1] . The solution of the integral equation obtained, 
constructed by the asymptotic method in [l, 51, can be writtenin the form of (36)-(39) 
in [l], The coefficients A,,, are hence now determined only by the shape (1.1) of the 

m 
stamps 

2 (1 -+ &%2)-*irp (2 arc t.s EL) = 
c 

.12, (ed”” (1.7) 
n-0 

The coefficients ci (i 0, I, 2, 3) take the following values: 
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1 1 

~.o=-2-2v+3v~ 

1+v 
++2+5ReA &,-$,,A 1--,,2-ydy 

s If!/ s l--1/ 
(1.8) 

0 0 

c1 = (I-16 v2) 61, c2 = 4 + 6v + 4v (1 - v) / (3-16~‘) 

(‘3 = - 2C” + L 
IL 

- 4 In 2 + 6~ - 2 32~ (I- v) (I - 2v) - 4 Re A s y”-” x 

0 

1 

3 + 3:/ + !I2 &, _ 4Re .J 
(1 + !I)3 S[ 

y2-h- 1 + (2 _ i) (1 - y) - 

0 

f (2 - h) (1 - h) (1 - !,i2] 3 (1”” ;jr:‘:! (I!/ 

The remaining notation is the same as in [l]. Numerical values of the coefficients ci 
from (1.8) are presented below for different values of the Poisson’s ratio v . 

Y Co Cl CS Cr 

0 -2.9309 0.1592 4.6000 0.980 
0.1 -2.3868 0.1203 5.6224 2.136 

E -1.8494 -1.3503 -0 0.0458 * 0490 6.7104 7.1104 3.932 5.622 

::; -0.5685 -0.9216 -0.2381 -0.1490 6.8224 6.0000 6.677 6.345 

The constant c in (1.6) is determined from the relationship (28) in [l]. For stamps 
without comers this relationship (taking the form(40)from [l] for c == 0 ) serves to de- 

Fig. 2 

termine the quantity a = tg l/s y which character- 
izes the size of the contact domains. 

The magnitude of the force P (Fig. 1) acting on 
the stamp can be found from the equilibrium con- 
dition for the stamp. For c = 0 the resultant Z 
of the contact pressure, which equals the force P 

in magnitude, is determined by (41) in [l] with 

(1.7) and (1.8) taken into account. 

2, As in illustration, let us consider the prob- 
lem of impressing two spherical stamps of radius 
R (1 + A) whose surface is given by the equation 

r=(fl-2A+AQosV -AIcosQ) 

into an elastic sphere. In this case 

_.l, = 0, AZ=&. 

.j = _&+4A-A3 
14 

(1 + A)8 

Dependences of the quantities 2&, (1 + A) A-1 a, 

(1 + A) (GA)-1 u (0) on the quantity P* = (1 + A) (RBGA)-1 P for v = 0.3, A, / 

A zS-- 3/2* c = 0 correspond to curves 1, 2 and 3 in Fig. 2. The dashed lines represent 
the corresponding dependences obtained on the basis of the Hertz solution. A comparison 
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shows that use of the Hertz solution results in substantial errors for large contact domains. 
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A detailed exposition of the mechanical results announced in [l] is given below, 
Let us suppose that a thin viscoelastic variable-section rod of finite length E is sub- 

jected to weak bending, under the action of longitudinal compressive force P , andunder 
the influence of a slowly varying external transverse load p (2, t) . 

Then the deflection Y (z, t) of the rod axis is described by the following boundary 

value problem [2 - 43: t 

- P (5, t) - s K (t, t) P P, z) dt, O\<x<l, o<t<co 

0 

ui [y] = 0, i -= 1,2,3, 4 (2’ 

Here the notation introduced in El], and the conditions imposed on the moment of iner- 
tia I fz), the creep kernel K (t, 7) and the left sides of the boundary conditions II [y] , 

are retained. We also proceed from the definition of Euler stability and the critical va- 
lue of tbe force P contained in [1] , (Another approach to this question is contained in 

C51). 
The prpose of this paper is to obtain a lower bound and an exact formula for the cri- 

tical value of the-force P under subst~~a~y more general conditions than in [4]. The- 

orem 1 from [l] on the spectrum of the Volterra operator V 
t 

(v/l (t) := s K (‘3 t) f (z) dz, o < t < ~3 (3) 


